CHAPTER 2

THE TIDE-RAISING FORCES

2.1 Introduction

[t was explained in Chapter I that the local tide
results from the superposition of long waves of tidal
frequencies generated throughout the ocean by the
tide-raising forces of the moon and the sun. It
remains to investigate these forces, particularly
with a view to determining the frequencies that
characterize their fluctuations. It has been reason-
ably assumed, and later established by experience,
that these are also the frequencies of the tide waves
generated in the ocean, and so are the main
frequencies present in the fluctuations of the local
tide. Shallow water distortion, however, may be
expected to add multiples and combinations of
these frequencies (over-tides) to the spectrum of a
coastal tide. Fluctuation in the tide or in the tidal
force at a particular frequency is called the harmon-
ic constituent at that frequency. The amplitudes and
phaselags of the constituents are the harmonic con-
stants of the tide, the phaselag usually being re-
ferred to the phase of the corresponding constituent
in the tide-raising force at Greenwich. While it may
be expected that the harmonic constituents present
in the spectrum of the tide-raising forces will be
present in the spectrum of the local tide, it should
not be expected that they will be present in the same
proportion or with the same phase relation. This is
because ocean basins and coastal embayments are
more nearly resonant at some tidal frequencies than
at others, because nodes and amphidromes occur at
different locations for constituents of different
frequencies, and because processes such as the
transfer of energy from surface tide to internal tide
may be frequency selective in different situations.

The tide-raising forces are simply the portions of

the moon’s and the sun’s gravitational attraction,

that are unbalanced by the centripetal (centrally
directed) acceleration of the earth in its orbital
_motions. At the centre of mass of the earth, and
only at this point, there is an exact balance between
the gravitational attractions and the centripetal
accelerations, this being the condition for orbital
motion. Ea vity, which includes the centri-
fugal force due to rotation of the earth on its axis,
‘determines the shape of level surfaces and hence
the shape of the mean level of the sea; but it does not

contribute to the tide-raising forces because it does
“not vary with time.JAlthough, as we shall see later,
the moon has moré effect on the tide than does the
sun, it will be convenient to consider the sun’s
contribution first, since the orbital parameters are

easier to envisage for the earth-sun system.

2.2. Sun’s tide-raising force

In this section we require Newton’s laws of mo-
tion and of universal gravitation, and an un-
derstanding of centripetal acceleration. The law of
motion states that the acceleration of a body equals
the force acting on it per unit mass, or

force
mass

(2.2.1) acceleration =

The law of universal gravitation states that a body
of mass M exerts a gravitational attraction on a unit
mass at a distance r of

2.22) F, = M

: 2

r

in which G is the universal gravitational constant.
The centripetal acceleration is the acceleration ofa
body toward the centre of curvature of the path
along which it is moving, and for a body with
velocity v along a path with radius of curvature r, it
is

A= 2
r

Let us now compare the gravitational attraction
of the sun on the earth to that of the moon on the
earth. The mass of the sun is 27 million times that of
the moon, and the distance of the sun from the earth
is 390 times that of the moon. Using this informa-
tion in equation 2.2.2 gives

6
F&(sun) _ 27 x 10° _ 178
F ,(moon) 390°

so the gravitational attraction of the sun on the earth
is 178 times that of the moon. This may at first seem
surprising since we know the moon to be more
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effective in producing tides; but it is only the por-
tion of the gravitational force not balanced by the
centripetal acceleration in the earth’s orbital mo-
tion that produces tides. This unbalanced portion
will shortly be shown to be proportional to the
inverse cube rather than the inverse square of the
distance from the earth, but still proportional to the
mass as in equation 2.2.2. Thus, the tide-raising
forces of the sun are about 178/390 = 0.46 times
those of the moon.

Figure 13 depicts a portion of the earth’s orbit
around the sun, with the cross section through the
earth greatly exaggerated with respect to the sun’s
size and distance. Since the acceleration related to
the earth’s axial rotation is already accounted for in
earth gravity, the earth should be thought of here as
maintaining a fixed orientation in space during its
revolution about the sun; thus, each part of the earth
experiences the same centripetal acceleration
toward the sun. In particular, the centripetal
acceleration at the centre of the earth, 0, is exactly
equal to the sun’s gravitational attraction at that
point, this being the condition for orbital motion.

The centripetal acceleration, being everywhere
constant, is therefore everywhere equal to the gra-
vitational attraction at the centre, GS/r?, where S is
the sun’s mass and r its distance from the centre of
the earth. At a point such as A, that is closer to the
sun, the gravitational attraction is greater than at the
centre, 0, and so has an unbalanced component that
attempts to accelerate a mass at A, away from 0 and
toward the sun. At a point such as A', that is farther
from the sun, the gravitational attraction is less than
at 0, and the unbalanced component attempts to
accelerate a mass at A’ away from 0 and away from
the sun. At B and B’ in Fig. 13, the gravitational
attraction has almost the same magnitude as at 0,
but is directed toward the sun along a slightly
different line, so that the unbalanced components
are both acting toward 0. These unbalanced com-
ponents of gravitational attraction are the sun’s
tide-raising forces. At A, A’, B, and B’ they are
vertical, but at intermediate points they are inclined
to the vertical. At four of the intermediate points the
forces are entirely horizontal. The horizontal com-
ponents of the tide-raising forces are called the

Fic. 13. Origin of sun’s tide-raising forces (heavy arrows) as differences between sun’s gravitational attraction and carth’s

centripetal acceleration in solar orbit.




tractive forces since it is they that accelerate water
away from B and B’ toward A and A" in an attempt
to bring the surface everywhere normal to the vec-
tor sum of gravity and the tide-raising force. This
ideal surface, referenced to the mean sea level
defined by gravity alone, is called the equilibrium
tide. To picture the sun’s equilibrium tide in three
dimensions, imagine the shapes traced out by
revolving Fig. 13 about the axis AA’. Ocean tides
are significant mostly because the water moves
relative to the solid surface of the earth. If the earth
were sufficiently pliable, it too would change shape
to conform to the equilibrium tide surface, and
there would be little or no relative movement of the
water. The earth is not perfectly rigid, and does
change shape slightly in response to the tidal
forces, but these earth tides are small enough to
neglect in this mostly qualitative discussion.

We will now estimate the magnitude of the tide-
raising forces. As already stated, the sun’s gravita-
tional attraction at 0 in Fig. 13 is GS/r*. AtA it is
GS/(r-e)?, atA' itis GS/(r+e¢)?, and at Band B' itis
GS/(r?* + €%), where e is the earth’s radius. All the
attractions are directed from the point toward the
sun’s centre H. Since the tide-raising force at a
point is the difference between the sun’s local
attraction and its attraction at the centre of the earth,
we have the sun’s tide-raising force, F,, at A as
(2.23) Fa) = 9 (1 + 2%+ ... -1

r
= 9 GSe
r3
In 2.2.3 and 2.2.4 we use the binomial expansion
for (1 —e/ry?and (1 + e/r)~? and neglect squares
and higher powers of e/r, since it is so small. AtA’,

(2.2.4) —FA) = G5 (1-26 + ... -1
r? r
= 2 GSe

r3

In 2.2.3 and 4, and in what follows, we have
adopted the sign convention that a force directed
vertically upward is positive. This explains the
minus signs on the left sideof 2.2.4and 2.2.5. AtB
and B’, the vector subtraction of the sun’s attraction
at 0 from that at B and B’ gives, within the same
approximation as above, only a component of the
tide-raising force directed toward 0, and

(2.2.5) —F/(B)=—F(B’)
_ (GS V=1 sin B = GS
=12+ %) 'lsmB—Tf
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where B = £ OHB = £ OHB'. In 2.2.5 we
neglected e*/r* and approximated sin  as e/r. From
the above expressions we see that the tidal forces
are proportional to the mass of the sun and to the
inverse cube of its distance, and that the com-
pressional forces around the great circle BB, mid-
way between A and A', are one half the strength of
the expansional forces at the points A and A’, at
which the sun is in the zenith and the nadir, respec-
tively.

2.3 Moon’s tide-raising force

In the previous section we spoke of the earth as
orbiting around the sun, but actually the earth and
the sun are both orbiting around a common centre
of mass, which is less than 500 km from the centre
of the sun. Similarly, the moon and the earth are
orbiting about a common centre of mass, which is
inside the earth, about'l 700 km beneath the sur-
face. It is the revolution of the earth in this small
orbit that is the counterpart of its revolution about
the sun, which was considered in section 2.2. With
this in mind, and with r as the moon’s distance and
M, the moon’s mass, replacing S, we may apply the
logic of section 2.2 directly to the earth-moon
system (with H in Fig. 13 now being the moon’s
centre). This permits us to write down immediately
expressions for the moon’s tide-raising forces. The
expansional forces at the points for which the moon
is in the zenith and the nadir are

(2.3.1) F(A)=FA"= 2 GMe

E
and the compressional forces on the great circle
around the earth’s surface midway between these
two points are

(23.2) F(B) = F(B') = - CMe
JE

We have already noted in section 2.2 that the
tide-raising forces of the sun are only about a half of
those of the moon. It may be of some interest to
compare the moon’s tide-raising force to the force
of gravity at the earth’s surface. Neglecting the
centrifugal force due to axial rotation, the surface

gravity 1s

(233) g = CE 50 G = 8
e? E
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where E is the earth’s mass. The maximum lunar
tidal force is that expressed in 2.3.1, which, with
the help of 2.3.3 may be rewritten as

_ M e\3
(2.3.4) F,(A)-zg(E)(;)

M/E = 1/80 and e/r=1/60, which, on substitution
into 2.3.4 give the maximum lunar force as 1077g.
So the tidal force is at most one ten-millionth of the
earth’s surface gravity. These are small forces in-
deed, but they act on every particle of water
throughout the depth of the ocean, accelerating
them toward the sublunar (or subsolar) point on the
near side of the earth and toward its antipode on the
far side. The undulations thus set up in the deep
ocean are in fact quite gentle, and only become
prominent when their energy is compressed hori-
zontally and vertically as they ride up into shallow
and restricted coastal zones.

2.4.Tidal potential and the equilibrium tide

Many force fields can be expressed as the nega-
tive gradient of a scalar field, called the potential
field. Such force fields are said to be conservative,
since the work done against the force in moving
from a point A to a point B depends only on the
positions of the two points, and not at all upon the
path followed in moving between them. This con-
stant amount of work required to move unit mass
(or unit charge, etc.) from A to B is the difference in
potential between A and B. The earth’s gravity field
is a conservative field, whose potential is given the
name geopotential. The difference in geopotential
between points is the work done against gravity in
moving a unit mass from one point to the other.
Equi-geopotential surfaces are the familiar level
surfaces, to which free water surfaces would con-
form in the absence of forces other than gravity.
The lunar and solar tide-raising forces are also
conservative, and can be expressed as the negative
gradient of the ridal potential. Since the sum of one
or more conservative force fields can be expressed
as the negative gradient of the sum of their poten-
tials, we may add the tidal potential to the
geopotential and interpret equipotential surfaces in
the combined field as “level” surfaces in the com-
bined gravity and tidal force fields. In particular,
one of these equipotential surfaces would be the
surface of the equilibrium tide, the surface to which
water would conform if it could respond quickly
enough to the changing tidal forces. Because the

geopotential does not vary with time and because
we are interested in the time-variable tides, we need
only consider the tidal potential, and interpret its
variations as variations in the total potential at the
mean sea level.

The tidal potentials, p,, at the point P (Fig. 14)
are given very closely by the expressions

N
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FiG. 14. Spherical triangle formed by north pole, the point on
the earth directly beneath the sun (or moon) and the general
point P on the earth’s surface.

2
(2.4.1) — p(moon) =Q2_ML3 (3 cosan— 1)
rm

2
—p,(sun) = GSa” (3 cos?a,— 1)
2r

where r,and r, are the moon’s and the sun’s dis-
tances from the earth, the angles o, and a, are their
zenith angles (co-altitudes), and a is the distance
from the centre of the earth to the point P(equals
earth’s radius, e, if P is at the surface). The other
symbols are as previously defined. The minus signs
in front are required to conform with the convention
that the force is the negative gradient of the poten-
tial. Differentiation of 2.4.1 with respect to a gives
the vertical component of the tidal force. With cos
a = 1, this reproduces the expression 2.2.3 for the
tidal force at A(Fig. 13), and with cos a = 0, it
reproduces the expression 2.2.5 for the tidal force
at B.

The equilibrium tide surface must be an
equipotential surface in the combined tidal and
gravity field, and so any increase in the tidal poten-
tial must be matched by a decrease in the geopoten-
tial (i.e. a fall in the surface), and any decrease in
tidal potential must be matched by an increase in
geopotential (i.e. a rise in the surface). Using this
fact we can calculate the height of the equilibrium
tide above the mean sea level. Let the height of the




equilibrium tide be Ak, which corresponds to an
increase of gAh in geopotential. To maintain an
equi-potential surface, this increase must be equal
and opposite to the tidal potential, p,, so

(2.4.2) Ah =P

8
Substituting the expressions for G from 2.3.3 and
for p, from 2.4.1 into 2.4.2 gives the heights of the
lunar and solar equilibrium tides as

(2.4.3) Ah(moon)=—Me'_ (3 cos?a,,— 1)
Er,,,

Ah(sun) =—3€¢" (3 cos?a,— 1)
2FEr,

In substituting from 2.4.1 we put a equal to e
because the equilibrium tide is for points at the
earth’s surface. The extreme values of Ak occur for
a= 0°and a = 90°. Using

= 6 400 km, M/E = 0.012,
elr,, = 0.017, SIE = 3.3x10°,
elr, = 4.3 x 1073,

2.4.3 gives the extreme equilibrium tide heights as

(2.4.4) Ah(moon) = 0.38 m, and -0.19 m
Ah(sun) = 0.17 m, and -0.08 m.

The ratio of the solar to the lunar values in 2.4.4 is
0.46, the same as the ratio of the extreme solar and
lunar tide-raising forces (see section 2.2). In fact,
the equilibrium tide reflects all the important char-
acteristics of the tide-raising forces, and, being a
scalar instead of a vector, is a much more con-
venient reference for local tidal observations and
predictions.

2.5 Semidiurnal and diurnal equilibrium tides

The equilibrium lunar and solar surfaces defined
by the expressions in 2.4.3 are ovals of revolution
centred at the earth’s centre and with axes directed
toward the moon and the sun. They appear to rotate
from east to west as the earth rotates daily on its axis
with respect to the moon and the sun. The inclina-
tion of their axes north and south of the equator
changes with the declination of the moon and of the
sun, in a monthly cycle for the moon and an annual
cycle for the sun. The ovals also change in shape as
the orbital distances, r,, and r; change in monthly
and annual cycles, respectively. In formal tidal
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study the characteristics of the equilibrium tide are
determined from mathematical analysis of expres-
sion 2.4.3 and the known astronomical parameters.
It is, however, useful to obtain an intuitive un-
derstanding of how the various tidal harmonic con-
stituents arise, and that is how we will now pro-
ceed.

Figure 15 depicts the sun’s equilibrium tide
superimposed on the equi-geopotential surface of
mean sea level, (a) for the sun on the equator,
(b) for the sun at maximum north declination, and
(c) for the sun at maximum south declination. From
(a) it is seen that with the sun at zero declination an
observer on the equator rotates with the earth once
each solar day with respect to the sun’s equilibrium
tide, passing through LW at points B and B’ (B’ is
on the opposite side of the earth from B), and
through HW at points A and A’. In fact, an observer
at any latitude would experience equilibrium LW as
his meridian passed through B and B’, and HW as it
passed through A and A’, although the heights of
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Fic. 15. Equilibrium tidal surface (AA’) for sun or moon
(a) on equator, (b) north of equator and (c) south of equator.

1
|



30

HW would decrease with increasing latitude north
or south of the equator. This is the origin of the
semidiurnal solar constituent of frequency two cy-
cles per day (30%h); it is designated S,. If we
simply replace the sun with the moon in the above
discussion, we have the explanation for the origin
of the semidiurnal lunar constituent (M>). Its fre-
quency is two cycles per lunar day (28.98°h). The
lunar day is about 50 min longer than the solar day,
because the moon advances about 12.5° in its orbit
each day with respect to the sun’s position.
When the sun is north or south of the equator,
one centre of HW for its equilibrium tide is north
and the other is south of the equator, as shown in
Fig. 15b and c. In these cases, an observer moving
around with the earth at the equator would still
experience two equal HWs and two equal LW's per
day, although the HWs would not be as high as in
case (a). An observer at a northern latitude would
experience HHW at noon and LHW at midnight in

(b) while an observer at a southern latitude would
experience HHW at midnight and LHW at noon. In
case (c), there would be the same inequality in the
two HWs for observers away from the equator, but
the northern observer would now experience HHW
at midnight, etc. In the equilibrium tide the two
LWs would have the same height (but not necessar-
ily so in an actual tide). The difference in height
between HHW and LHW is called the diurnal in-
equality, and it increases with the declination of the
sun and with the observer’s latitude (north or south)
for an equilibrium tide. In fact, if the sun’s declina-
tion is 8, the band of low water around the earth in
the equilibrium tide extends no farther north and
south than latitude 90° - 8, and observers at higher
latitudes than this would see only a distorted diurnal
tide, with one true HW and an extended period of
low water. A semidiurnal tide with a diurnal in-
equality can be considered as the sum of a semidiur-
nal and diurnal tide. This is illustrated in Fig. 16,

(a) b)
+ = - — — -
¢ = 15°N & = 23°N & = 23°N
{c) {d)
— T =
+ = - X - - —
¢ = 55°N §=23°N ¢ = 75°N 8= 23°N

FiG. 16. Representation of solar equilibrium tide as sum of semidiurnal and diurnal contributions for sun at 23° declination, and

for latitudes (a) 15°, (b) 35°, (c) 55° and (d) 75°.




which shows the combination of the semidiurnal
and diurnal contributions to produce the equilibri-
um tide of the sun at 23° declination, for an observ-
er at latitude (a) 15°, (b) 35°, (¢) 55°, and (d) 75°.

Since the diurnal tide must reinforce the noon
HW when the sun and the observer are on the same
side of the equator, fall to zero when the sun is on
the equator, and reinforce the midnight HW when
the sun is on the opposite side of the equator, it is
clear that more than a single diurnal constituent is
required. From trigonometry we have the relation

(2.5.1) cos (n; +np)t+cos (n-np =
2(cos npt)(cos n;t)

If n, is the angular speed 360° per solar day (15°h)
and n,, is 360° per year (0.04°h), the right side of
2.5.11is seen to be a diurnal oscillation of frequency
n, whose amplitude is modulated at the annual
frequency ny, falling to zero at n,t = 90° and 270°,
and having maximum amplitude but with opposite
phase at n,t = 0° and 180°. Figure 17 shows a plot
of 2.5.1 for a few cycles of n, around not = 90° to

(cos n_t) {cos n,t}

)
\005 Qo

FiG. 17. Plotof cos(ny + ng)t + cos(n—ny)t = 2(cosngt)(cosn,t) for
a few cycles on either side of nyr =90°.

illustrate the change in amplitude and shift in
phase. This is the origin of the two solar dec-
linational diurnal constituents, P, with frequency
14.96°h, (n, - ny), and K, with frequency
15.04°h, (n, + ng). Because the earth’s rate of
rotation on its axis with respect to the “fixed stars”
is equal to its rate of rotation with respect to the sun
plus its rate of orbital revolution about the sun, the
frequency of K, is seen to be one cycle per sidereal
day.

The lunar equilibrium tide changes with the dec-
lination of the moon over a period of a month in the
same manner as the solar tide changes with the
sun’s declination over a year. This, then, gives rise
to two lunar declinational diurnal constituents
with frequencies of one cycle per lunar day plus and
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minus one cycle per lunar month. The frequency of
the earth’s rotation with respect to the moon plus
the moon’s frequency of orbital revolution about
the earth is also equal to one cycle per sidereal day,
so that one of the moon’s constituents has the same
frequency as the corresponding one for the sun, K.
Because of this, K, serves double duty, and is
called the luni-solar declinational diurnal con-
stituent. The other lunar constituent of the pair is
0,, with angular speed 13.94°h.

The orbits of the moon about the earth and of the
earth about the sun are not circles, but are ellipses,
with the earth and the sun occupying one of the foci
in the respective orbits. Thus, the distances of the
moon and the sun from the earth change within the
period of the particular orbit, 1 month for the moon
and 1 year for the sun. The orbital points at which
the moon is closest to and farthest from the earth are
called perigee and apogee, respectively. The corre-
sponding points in the earth’s orbit about the sun
are called perihelion and aphelion. The depen-
dence of the tidal potential on the inverse cube of
these distances (r,, and r, in 2.4.1) causes the shape
of the solar equilibrium tide (see Fig. 15) to length-
en along its axis and compress in the middle at
perihelion, and to shorten along its axis and expand
in the middle at aphelion. The shape of the lunar
equilibrium tide changes similarly at perigee and
apogee, respectively, but the change is much more
pronounced for the lunar than for the solar tide. The
effect of this is to modulate the amplitudes of the
solar constituents with a period of a year and of the
lunar constituents with a period of a month. But
there is a further complication; the earth and the
moon do not travel at constant angular velocities
around their orbits, but travel faster when they are
closer to the central body. The effect of this is to
modulate the phases of the lunar constituents over a
period of a month, and those of the solar con-
stituents over a period of a year. The combined
effect of the amplitude and phase modulations can
be imitated mathematically by adding to each con-
stituent two satellite constituents with frequencies
equal to that of the main constituent plus and minus
the orbital frequency, but with the amplitude of one
satellite greater than that of the other. Figure 18
attempts to illustrate how the amplitude and phase
modulations are accomplished. Tidal constituents
may be regarded as rotating vectors, since they
have a fixed amplitude and a uniformly increasing
phase angle. A vector sum is obtained graphically
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by placing all of the participating vectors head to
tail and joining the tail of the first to the head of the
last. OR is the main constituent, with angular speed
n, RS is the first satellite constituent, with speed
n, = n+n', and ST is the second satellite con-
stituent, with speed n, = n—n'. The sum of the
three constituents is OT, and relative to the rotating
vector OR, the point T traces out an ellipse with
centre at R. Its semi-major axis equals the sum of
the satellite amplitudes, and its semi-minor axis
equals their difference. It may be seen from Fig. 18

Fic. 18. Amplitude and phase modulation produced by vector
sum of main constituent plus two counter-rotating satellite
constituents.

that as T moves around the ellipse once for each
cycle of the main constituent, the amplitude of the
vector sum, OT, oscillates between OP and OP’,
and the phase oscillates about that of OR through
the angle QOQ'. If the satellite amplitudes are
equal, the ellipse collapses to a line, and there
is amplitude modulation only. This is the origin of
the larger and smaller lunar elliptic semidiurnal
constituents N, (speed 28.44°h) and L, (speed
29.53%h), respectively, and also of the larger and
smaller solar elliptic semidiurnal constituents T,
(speed 29.96°)/h) and R, (speed 30.04°h). R, is so
small it is usually neglected.

2.6 Long-period equilibrium tides

Here we will discuss tidal constituents whose
periods are comparable to the sun’s or the moon’s

orbital period. It is important to distinguish be-
tween a long-period constituent and a long-period
modulation of a short-period constituent. The long-
period modulation changes the range of the tide
over the long period, but does not change the mean
water level, whereas the long-period constituent
does not change the range of the tide, but introduces
a long-period fluctuation in the mean water level.
To demonstrate the origin of the long-period tidal
constituents we look again at Fig. 15. It is apparent
that an observer near the North or South Pole will
experience a lower daily average equilibrium tidal
elevation when the tide-raising body (sun or moon)
is on the equator as in (a) than when it is north or
south of the equator as in (b) or (c). Although most
easily envisaged for high latitudes, this effect is
present at other latitudes as well. It results in the
introduction of the lunar fortnightly constituent M
(speed 1.10°h), into the lunar equilibrium tide, and
the solar semi-annual constituent S;, (speed
0.08°h) into the solar equilibrium tide. M, and S,
are thus related to the moon’s and the sun’s cyclic
changes in declination. There is also a lunar month-
ly constituent, M,, (speed 0.54°/h), and a solar
annual constituent, S, (speed 0.04°/h), and these are
related to changes in the lunar and solar distance
over a month and a year, respectively.

2.7 Mathematical analysis of the equilibrium
tide

In the preceding discussions we have considered
the equilibrium tide as the envelope of equal tidal
potential surrounding the earth at a given time. We
will now express it as a time-varying function at a
fixed location on the earth. To do this, we must
express cos « in 2.4.3 in terms of the local latitude
and of the declination and hour angle of the sun and
moon. The hour angle of a celestial object is its
longitude angle west of the observer’s longitude. In
Fig. 19, PSN is a spherical triangle on a sphere
surrounding the earth, and with its centre at the
earth’s centre, 0. P is the projection of the observ-
er’s position from the centre of the earth onto the
sphere, N is the projection of the North Pole onto
the sphere, and S is the intersection with the sphere
of the line joining the centre of the earth to that of
the celestial object (sun or moon). Angle PON is
the co-latitude of P (90° — ¢), angle SON is the
co-declination of the celestial object (90° - 8), POS
is its zenith angle (o) with respect to P, and PNS is
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Fic. 19. Projection of the sun {or moon), the earth’s polar axis,
and a general point on the earth’s surface onto a sphere sur-
rounding the earth (the celestial sphere), to form the spherical
triangle SNP.

its hour angle (H) with respect to P. From a formula
of spherical trigonometry we have

(2.7.1) cosa = sin ¢ sin d + cos ¢ cos & cos H

Substituting 2.7.1 into 2.4.3, and using some
trigonometric relations to simplify it, gives the
equilibrium tide at P as

(2.7.2) Ah = BC,(cos 26 — 1/3) +
BC,(sin 28) cos H +
BC5 (cos 28 + 1) cos 2H,

where B = 3Me* for the moon, 3_Sei for the
sun, 2Er,,,3 2Er_‘-3
and Co = 3/8 (cos 2¢ — 1/3)

o
|

= 1/2 sin 2¢
C, = 1/8 (cos 2¢ + 1).

H and 3 are the local hour angle and declination of
the moon or the sun, as appropriate. The C; are
constants for a given latitude. '

In discussing 2.7.2 we will refer only to the
moon, but the same logic applies for the sun and its
equilibrium tide. The first term on the right of 2.7.2
introduces the long-period species of constituent,
since B varies over a period of a month and cos 29
varies over a period of half a month. The second
term introduces the diurnal species of constituent
since the hour angle (H) advances at a frequency of
one cycle per lunar day. Multiplication by sin 28
splits the species into constituents whose frequen-
cies differ by two cycles per month, as shown in
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2.5.1 and Fig. 17 from a different approach. The
third term on the right of 2.7.2 introduces the
semidiurnal species of constituent, since 2H ad-
vances at a frequency of two cycles per lunar day.
Multiplication by B modulates the species at a
frequency of one cycle per month, giving rise to
constituents N, and L, as defined in section 2.5.
The factor cos 23 also modulates a portion of the
semidiurnal species at a frequency of two cycles per
month, introducing a pair of lunar declinational
semidiurnal constituents not previously discussed.
Their frequencies are two cycles per lunar day plus
and minus two cycles per month. The constituent
with the higher frequency is also the larger of the
pair, and has the same frequency as the correspond-
ing solar constituent, both being equivalent to two
cycles per sidereal day. It is thus called the [uni-
solar declinational semidiurnal constituent or K,
(speed 30.08°/h). Many other constituents could be
discovered by examining the modulation of the
declinational constituents by B and by treating the
departure of some of the factors from true sinusoid-
al functions of time. The relative amplitudes of the
constituents in the equilibrium tide can also be
determined from analysis of 2.7.2 and substitution
of the parameter values. The purpose of this sec-
tion, however, is simply to demonstrate some of the
techniques employed in identifying the important
tidal frequencies. Numerical analysis on fast
electronic computers now provides tools for in-
vestigation of the equilibrium tide that were not
available during the early development of tidal
theory. It is now quite feasible to generate from
2.7.2 the combined equilibrium tide for the sun and
the moon as a time series of elevations covering
many years, and to analyse it numerically into its
constituents, identifying their frequency, phase,
and amplitude. In Appendix A are listed a few of
the equilibrium tidal constituents, along with their
frequencies (as angular speed) and their amplitudes
relative to that of M,.

2.8 Spring and neap tides

It cannot be stressed too much that at no place on
the earth is the actual tide the same as the equilibri-
um tide at that place. Nevertheless, many of the
characteristics of the two are similar except for
magnitude and timing. The equilibrium spring tide
occurs on the day that the sun’s and the moon’s
HWs fall on the same meridian, which, as shown in
Fig. 20, occurs at new and full moon. The HWs
occur near local noon and midnight and are higher
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Fic. 20. Combination of lunar and solar equilibrium tides to produce spring tides at new and full moon and neap tides at moon’s

first and last quarter.

than average because of the reinforcement of the
two. The two LWs also reinforce, but in the op-
posite sense, making them lower than average. The
result, then, is a larger than average range of equi-
librium semidiurnal tide at spring tide. The equilib-
rium reap tide occurs on the day that the sun’s and
the moon’s HWs most closely coincide with the
other’s LWs, which, as shown in Fig. 20, occurs at
the moon’s first and last quarter. The result is a
smaller than average range of tide at neap tide. The
range of the combined solar and lunar tide does not,
of course, change suddenly at spring and neap, but
is modulated sinusoidally over the half-month pe-
riod between successive springs or neaps. From the
standpoint of tidal constituents, it is the interaction
of M, and S, as they come in and out phase with
each other that produces the springs and neaps.
This fortnightly modulation of the semidiurnal tide
is prominent in actual tide records as well as in the

equilibrium tide, so much so in fact that in many
parts of the world HW and LW at springs are taken
as standards of extreme high and low waters. This
is not invariably the case, however, because in
other parts of the world there may be another
characteristic tide that dominates over the spring
tide. In the Bay of Fundy, for example, the per-
igean tides (the large semidiurnal tides associated
with the moon’s perigee) are equally as significant
as the spring tides. In regions such as Canada’s
Pacific coast and parts of the Gulf of St. Lawrence
it is the diurnal inequality that renders the simple
spring tide heights unsatisfactory as standards of
extreme high and low water.

2.9 Classification of tides

Tides are frequently classified according to the
diurnal inequality they display, as a means of pro-




viding a simple description of the character of the
tide in various regions. The formal classification is
usually made on the basis of the ratio of some
combination of the diurnal harmonic constituents
over a combination of the semidiurnal constituents.
A criterion that is commonly used is the ratio of the
amplitude sum of O, and K, over the amplitude sum
of M, and S,. The ratio that is used in Canadian tidal
classification is more complicated than this, but the
principle is the same — the larger the numerical
value of the ratio, the larger the diurnal inequality.
The purpose of defining a ratio is to automate the
classification once the constituents are known,
avoiding the need to scan long periods of record
visually. Regardless of the method used, the intent
is to classify tides into four groups, qualitatively
described as follows:

Semidiurnal (SD). two nearly equal HWs and two
nearly equal LWs approximately uniformly spaced
over each lunar day.

Mixed, mainly semidiurnal (MSD): two HWs and
two LWs each lunar day, but with marked in-
equalities in height and irregularities in spacing.
Mixed, mainly diurnal (MD): sometimes two un-
equal HWs and LWs at irregular spacing over a
lunar day, and sometimes only one HW and one
LW in a day.

Diurnal (D): only one HW and one LW each lunar
day.
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Since the equilibrium tide is the same for all
points at the same latitude, the earth could be di-
vided into bands of latitude conforming to the
above classification, with equilibrium tides at lati-
tudes less than 10° being SD, those between lati-
tudes 10° and 40° being MSD, those between 40°
and 60° being MD, and those at latitudes higher
than 60° being D. The actual tides, of course, may
reflect the character of tide waves propagated from
far away, and should not be expected to conform to
the same classifications within latitude bands. Fig-
ure 21 shows sample tidal curves for one month at
four Canadian locations to illustrate the four classes
defined above. It is noted that all four locations lie
within the same three-degree band of latitude. Fig-
ure 22 indicates on a map of Canada the regions in
which the various types of tide dominate. Although
the East Coast is predominantly a region of mainly
semidiurnal tide, we find the only examples of the
diurnal tide in the Gulf of St. Lawrence. This is
because these points lie near an_ amphidromic point
of the semidiurnal tide. We alsé note that the tide
observed in the Arctic archipelago is heavily semi-
diurnal in character, unlike the equilibrium tide for
these latitudes. This is because much of the tide in
the Canadian Arctic has propagated in through the
passages from the North Atlantic Ocean.

T ——
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Fic. 21. Typical 1-month tidal curves from four Canadian sites, illustrating classes of tide. (a) is SD, (b) is MSD, (c) is MD and
(d) is D. Letters A and P indicate apogee and perigee. E, N, and S indicate the moon is on, north, or south of equator. The circles
indicate the moon’s phases.
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Fig. 22. Classification of tides at locations in




