Angela Hibbert, Harry Leach

Chris Hughes, Phil Woodworth

1. Motivation

Research Aim

To improve understanding of the high latitude oceanic response to atmospheric fluctuations, upon various timescales

2. Data & Methods

Southern Ocean

- Short record
 - low spatial resolution(18 stations)
 - high temporal resolution
- Useful for analysis of subseasonal to interannual variability

2. Data & Methods

Southern Ocean

- Daily means detrended
- Tide gauge data corrected to give subsurface pressure (SSP)
- Seasonal cycle removed
- Long period tides eliminated by low-pass filtering
- Used statistical analysis including Empirical Orthogonal Functions (EOFs) and crosscorrelations

Focusing upon:

- Coherence of fluctuations
- Variability explained by atmospheric fluctuations
- Recurring or propagating features
- Comparison with models

2. Data & Methods

Atmospheric Variability

- Southern Annular Mode
 Air pressure contrast between polar low and mid-latitude high
- Semi-Annual Oscillation
 Fluctuations in sea-level pressure patterns affecting strength of Westerlies
- Southern Oscillation
 Originally defined as
 Tahiti/Darwin pressure contrast

3. Results

Coherence

- Striped pattern suggests fluctuations are coherent
- Leading EOF
 - positive amplitude
 - explains 51.8% of SSP variability
- Change between Syowa and Mawson
 - due to differences in latitude?
- Westwards propagation?

3. Results

Correlation Matrix – zero lag

Neighbouring stations well-correlated e.g. AA Peninsula, Western Indian sector.

SSPs are generally anticorrelated with Southern Annular Mode (SAM)

Atmospheric Fluctuations

Leading EOF - explains 51.8% of SSP variability

- good anticorrelation with the SAM (leading atmospheric mode)

Suggests it is the oceanic counterpart to the SAM

3. Results

Semiannual Oscillation

- Annual cycle dominates around East Antarctic, but semi-annual component pronounced elsewhere
- Perhaps SAO-induced changes in Westerlies & Easterlies produce Ekman transport on or offshore. Clearer at latitudes most affected by Easterlies

Longitude

4. Results

Recurring and/or propagating features

No evidence of recurring features in autocorrelations and periodograms

Crosscorrelations failed to identify propagating features in SSP

4. Preliminary Conclusions

- Synchronous pattern dominates
 SSP around Antarctica
- Well-correlated with the SAM
- Possible latitude-dependent
 SAO signal to be investigated using wind field
- Little evidence of propagating or recurring features

5. Other work in progress

- Correlations with other atmospheric indices
- Comparisons with baroclinic and barotropic models

