Glacial Isostatic Adjustment

Giorgio Spada Urbino University "Carlo Bo"

with:

Gaia Galassi (UNIURB) and Marco Olivieri (INGV, Bologna)

GLOSS/PSMSL-80 workshop, Liverpool 2013

Wednesday, October 30, 2013

Glacial Isostatic Adjustment

Overview:

I). General ideas about Glacial Isostatic Adjustment (GIA),

2). Physics of GIA and "gravitationally self-consistent" modeling of sea level changes,

3). GIA and secular sea level rise, using PSMSL data (1880 to present),

Questions / discussion

Glacial Isostatic Adjustment

Rate of vertical displacement today

-Ice model: ICE5G -ALMA rheology: ./VSC/vsca_BENCH.dat

All PSMSL tide gauges (~ 1200)

All PSMSL tide gauges with T > 60 years (~ 140)

Most (all?) tide gauges are in regions of considerable GIA disequilibrium

(formerly) ICE COVERED areas & forebulge regions

4

This figure demonstrates signals from vertical land movements due to a number of different geological processes: **Stockholm**, **Sweden** as above (sea level fall due to Glacial Isostatic Adjustment), **Nezugaseki**, Japan (abrupt jump in sea level record following earthquake in 1964), Fort Phrachula **Bangkok**, Thailand (sea level rise due to increased groundwater extraction since about 1960), **Manila**, Philippines (recent deposit from river discharges and reclamation works) and Honolulu, **Hawaii** (a site in the PGR 'far field' without evident strong tectonic signals on timescales comparable to the length of the tide gauge record and with secular trend 1.5 mm/ year).

(The Honolulu record is shown above incidentally for some sort of comparison only. It should not be interpreted as suggesting the Hawaiian islands to be completely 'stable', as is obvious from their volcanic history. Similar comments would apply to other far field sites with long records but for different geological reasons depending on the location; in brief,

we do not believe any land to be completely 'stable',

which is the main motivation for interest in measuring vertical land movements.)

http://www.pol.ac.uk/psmsl/landmove.html

Paleogeography

the changing face of the Earth

Paleo-topography until 21 ka

Wednesday, October 30, 2013

RSL observations

"RSL zones"

Fig. 2. Observed spatial variability of sea level change since the time of the LGM from tectonically stable areas or areas where the tectonic rate is known and has been removed from the observed sig-(A) Ångerman, nal. Gulf of Bothnia, Sweden (13). (B) Andøya, Norway Nordland. (12). (C) South of England (14). (D) Hudson Bay, Canada (4). (E) Barbados (16–18). (F) Bonaparte Gulf, northwest Australia (27). Orpheus Island, (**G**) North Queensland, Australia [(23) and unpublished Australian National University data]. (H) Sunda Shelf, southeast Asia (15). the different Note time and amplitude scales. In the examples illustrated, all observed depths or elevations of the sea level indicators have been reduced to mean sea level. All time scales are in calendar years.

Kurt Lambeck, et al.

Downloaded from www.sciencemag.or

Sea-level in the Mediterranean 2,000 yrs BP (relative to present sea level)

7

San Vito Lo Capo, Sicily (I)

Roman fish tanks - Rome (I)

Haifa (Is)

Wednesday, October 30, 2013

GS

Overview:

I). General ideas about Glacial Isostatic Adjustment (GIA),

2). Physics of GIA and "gravitationally self-consistent" modeling of sea level changes,

3). GIA and secular sea level rise, using PSMSL data (1880 to present),

Questions / discussion

Glacial Isostatic Adjustment

Wednesday, October 30, 2013

GLOS9/PSMSL-80 workshop, Liverpool Oct 2013

a. Peak glaciation

"POST GLACIAL REBOUND"

21 kyrs BP

(a) At peak glacial conditions the Earth's surface is depressed beneath the ice sheet and slightly elevated outside the ice sheet owing to mantle flow.

Later on...

(b) During deglaciation the depressed region rises and peripheral regions subside. Uplift of the Earth's surface is frequently observed as relative sea level fall in recently deglaciated areas.

Adapted from: http://www.nrcan.gc.ca/earth-sciences/energy-mineral/geology/geodynamics/earthquake-processes/9593

10

<u>Causes of regional variability in TIM - induced sea level change (i)</u>

Causes of regional variability in TIM - induced sea level change (ii)

Adapted from Clark & Lingle, 1979

the "Sea Level Equation"

Farrell & Clark (1976)

$$S = \frac{\rho_i}{\gamma} G_s \otimes_i I + \frac{\rho_w}{\gamma} G_s \otimes_o S - \frac{m_i}{\rho_w A_o} - \frac{\rho_i}{\gamma} \overline{G_s \otimes_i I} - \frac{\rho_w}{\gamma} \overline{G_s \otimes_o S}$$

$$S =$$
 sea level change

$$ho_i,
ho_w=
m ice$$
 and water density

$$G_s = sea level Green function$$

$$I =$$
 ice thickness variation

$$\left\{\begin{array}{c}U_i\\\Phi_i\end{array}\right\}(\omega,t) \equiv \left\{\begin{array}{c}G_u\\G_\phi\end{array}\right\} \otimes_i \rho_i I, \quad \text{and}$$

$$m_i =$$
 ice mass variation

$$A_o =$$
 area of the oceans

 $\otimes_i, \otimes_o = 3(2+1)$ D convolutions $\overline{(\ldots)} =$ ocean average

$$\left\{\begin{array}{c} U_o\\ \Phi_o\end{array}\right\}(\omega,t) \equiv \left\{\begin{array}{c} G_u\\ G_\phi\end{array}\right\} \otimes_o \rho_w S$$

Overview:

I). General ideas about Glacial Isostatic Adjustment (GIA),

2). Physics of GIA and "gravitationally self-consistent" modeling of sea level changes,

3). GIA and secular sea level rise, using PSMSL data (1880 to present),

Questions / discussion

Glacial Isostatic Adjustment

Previous estimates of global sea level rise

]	Year and Author(s)	$\mu^a \ (\mathrm{mm/yr})$	Period ^b	$Method(s)^c$	GIA correction d	
	1941 Gutenberg	1.1 ± 0.8	1807 - 1937	RA	no	
	1952 Polli	1.1	1871 - 1940	-???-	no	
	1952 Cailleux	1.3	1885 - 1951	\mathbf{SA}	no	
	1952 Valentin	11	1807 1947		no	
1941	1958 Lisitzin	1.1	1807 - 1943	-???-	no	
	1962 Fairbridge & Krebs	1.2	1900-1950	SA	no	
	1974 LISICZIII 1078 Kalinin & Kliga	1.1 ± 0.4 1 5	-:::- 1860_1060	5A 777		
	1970 Kallilli & Kilge 1980 Emery	1.0 2	1800 - 1900 1850 - 1958	SA		Spada & Calacci
	1982 Gornitz et al 1	12	1880–1980	BA	no	Spaua & Galassi
1000	" " "	1.0	1880 - 1980	RA	Geological	(C11 2012)
1900	1983a Barnett	1.5 ± 0.2	1903 - 1969	EOF	no	(0)1, 2012)
10 A	1983b Barnett	1.8 ± 0.2	-???-	EOF	-???-	
	1984 $Barnett^a$	1.4 ± 0.1	1881 - 1980	EOF, RA	no	
	" "	2.3 ± 0.2	1930 - 1980	EOF, RA	no	
	1987 Gornitz & Lebedeff	0.6 ± 0.4	1880 - 1982	SA	Geological	
	·· ·· ··	1.7 ± 0.3	1880–1982	SA	Geological	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.2 ± 0.3	1880-1982	SA	Geological	
	1000 Deltier le Trechier et erre	1.0 ± 0.1	1880-1982	KA FOF	Geological	
	1989 Peltier & Tusningnam	2.4 ± 0.9	1920 - 1970 1807 1084	EOF	presumably ICE–3G	GIA COFFECTIONS
	1980 Filazzoli 1989 Pirazzoli	0.5 - 3.0	1880–1984 Eu			cinco lata 20a
	1990a Trupin & Wahr	1.75 ± 0.13	1000 - 1000 120	SA	 no	Since late 80S
	1991 Nakiboglu & Lambeck	1.15 ± 0.15 1.15 ± 0.38	1820 - 1990	SHA. RA	ANU models	
	1991 Douglas	1.8 ± 0.1	1880–1980	SA	ICE–3G	
	1991 Emery & Aubrey	indeterminable	1807 - 1996	_	_	
	1992 Shennan & Woodworth	1.0 ± 0.15	1901–1988 Eu	\mathbf{SA}	Geological	
	1993 Gröger & Plag	indeterminable	1807 - 1992	_		
	1995 Mitrovica & Davis	1.1 1.6	-1880 - 1990	SA	ICE-3G	
	1996 Davis & Mitrovica	1.5 ± 0.3	1856–1995 USE	SA	ICE-3G	
	1996 Peltier	1.94 ± 0.50	1920–1970 USE	EOF	ICE-4G	
	1997 Petter & Jiang	1.8 ± 0.0	1800-1990 USE	SA	ICE-4G	
	2001 Cabanas et al	1.8 ± 0.1 1.6 ± 0.15	1000-1900	SA SA	ICE-3G	
	2001 Cabanes et al. 2001 Church et al	1.0 ± 0.10 1.5 ± 0.50	1900-1990	ΔPE	Various models	
	2001 Mitrovica <i>et al</i>	1.5 ± 0.50 1.5 ± 0.1	1880 - 2000	SA		
		1.8 ± 0.1	1880 - 2000	SA	ICE–3G	
	2004 Church et al.	1.8 ± 0.3	1950 - 2000	EOF	ICE-4G(VM2), L,M	
	22 22	1.75 ± 0.10	1950 - 2000	EOF	ICE-4G(VM2)	
	" "	1.89 ± 0.10	1950 - 2000	EOF	L	
		1.91 ± 0.10	1950 - 2000	EOF	M	
V	2004 Holgate & Woodworth	1.7 ± 0.20	1950-?	RA	-???-	
	2005 Nakada & Inoue	1.5 1 7 + 0.20	20th century	SA	$\begin{array}{c} \text{no} \\ \text{ICE} AC(MN2) \text{I} M \end{array}$	
todav	2006 Church & White	1.7 ± 0.30 1.71 ± 0.40	20th century 1870–1025	EOF	ICE-4G(VM2), L, M ICE AC(VM2), L, M	V
	" "	1.71 ± 0.40 1.84 ± 0.10	1070-1955 1036-2001	EOF	ICE=4G(VM2), L, M ICE=4G(VM2), L, M	
	2007 Church et al	_???_	-???-	APE	-???-	
	2007 Hagedoorn <i>et al.</i>	1.46 ± 0.20	20th century	RA	ICE–3G	
	2011 Church & White	1.7 ± 0.2	1900–2000	EOF	as in Church $et al.$ (200	4)
))))))	1.9 ± 0.4	1961 - 2009	EOF	" "	/

Previous estimates of global sea level rise from TG observations

18

GLOBAL SEA RISE: A REDETERMINATION

BRUCE C. DOUGLAS

Department of Geography, University of Maryland, College Park, MD 20742, USA

a very influential paper: Douglas 1997 (D97)

Abstract. It is well established that sea level trends obtained from tide gauge records shorter than about 50-60 years are corrupted by interdecadal sea level variation. However, only a fraction (<25%) of even the long records exhibit globally consistent trends, because of vertical crustal movements. The coherent trends are from tide gauges not at collisional plate boundaries, and not located in or near areas deeply ice-covered during the last glaciation. Douglas (1991), using ICE-3G values for the postglacial (PGR) rebound correction, found 21 usable records (minimum length 60 years, average 76) in 9 oceanographic groups that gave a mean trend for global sea level rise of 1.8 mm/yr \pm 0.1 for the period 1880–1980. In that analysis, a significant inconsistency of PGR-corrected U.S. east coast trends was noted, but not resolved. Now, even after eliminating those trends, more (24) long records (minimum 60 years, average 83) are available, including series in the southern hemisphere

(ICE-3G GIA-corrected) mean trend of global secular sea level rise: 1.8 +/- 0.1 mm/yr

Glacial Isostatic Adjustment GLOSS/PSMSL-80 workshop, Liverpool Oct 2013

Glacial Isostatic Adjustment

GLOS³⁰/PSMSL-80 workshop, Liverpool Oct 2013

The D97 requirements on PSMSL data

- I) be at least 60 years in *length*
- II) not be from sites at collisional *tectonic plate boundaries*
- III) 80% complete or better

IV) in reasonable agreement (at low frequencies) with records from *nearby gauges* that sample the same water mass

V) not from areas <u>deeply covered by ice</u> during the last glacial maximum (D91).

Strengthened in D97 to eliminate also records from sites in the area of the immediately adjacent *peripheral bulge*.

(D91) Douglas (1991, JGR) "Global Sea Level rise"

Glacial Isostatic Adjustment Wednesday, October 30, 2013 GLOSS/PSMSL-80 workshop, Liverpool Oct 2013

A GIA-independent sea-level correction?

ICEI (Peltier & Andrews, 1976)

ICE-5G (Peltier, 2004)

ICE-3G (Tushingham & Peltier, 1991)

Lambeck et al., since ~2000

Wednesday, October 30, 2013

A GIA-independent sea-level correction?

1). GIA-model predictions are ~the same for all models:

-> "SGX set" (44 TGs)

2). Clean up the set using the D97 criteria I-IV

-> "SG01" set (22 TGs)

Previous estimates of global sea level rise from (RLR) TG observations

Thank you and happy 80th anniversary to GLOSS/PSMSL!

Glacial Isostatic Adjustment

GLOS₅₆/PSMSL-80 workshop, Liverpool Oct 2013